
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 06, Issue 04 (April. 2016), ||V2|| PP 01-05

International organization of Scientific Research 1 | P a g e

A Modified Algorithm for Distributed Deadlock Detection in

Generalized Model

 Sakshi Surve
1
, Sharad Bhatt

2

1
(University of Mumbai) geetams24@rediffmail.com)

2
(University of Mumbai) Bhatt.sh2@gmail.com)

Abstract: - In a distributed system, a deadlock may occur when set of processes wait for resources from each

other. A process involved in a deadlock waits indefinitely unless a special action is taken. Deadlock leaves the

system into a blocking state with no process getting complete and also it reduces the throughput. In this paper a

technique is presented that will improve the performance of Srinivasan distributed deadlock algorithm for

multiple executions. In Srinivasan algorithm whenever multiple initiators invoke the algorithm one after the

other same deadlock cycle and similar message transfers may be reported in more than one execution. So, in

order to handle multiple executions an algorithm has been proposed which will not only reduce the number of

message transfers but will also reduce the deadlock detection time. The proposed algorithm gives priority to

different algorithm execution depending on their process id‟s along with this it allows lower priority executions

to continue so that a deadlock that are not directly reachable from the higher priority execution could be

detected.

Keywords: - Distributed Deadlock, Generalized Model, Wait-for Graph

I. INTRODUCTION
 In a distributed computing environment remote resources are needed by processes for their

computation. Processes sends request message to remote sites, when remote resources are needed. Depending on

the availability or unavailability of the resources, the processes are either given the requesting resources or are

made to wait indefinitely. This leads to deadlock in distributed systems. A deadlock is defined as a time-

dependent state in which a set of processes are waiting for resources from other processes in the same set

indefinitely. As deadlock leaves the system into a blocking state with no transaction getting complete; therefore,

they must be detected.

 In distributed systems many resource request model exists and depending on these models deadlock

detection techniques also varies. In AND [2] model, a process remains blocked until all requested resources are

granted. The existence of cycle in the wait-for graph (WFG) [2, 3] is a necessary and sufficient condition to

detect deadlock. In OR model [2], a process remain blocked until it is not able to acquire any of the requested

resource. The existence of knot in the WFG is a necessary and sufficient condition to determine a deadlock. In P

out-of Q model [2], also known as generalized model, a process makes Q resource requests, and gets unblocked

only when any P resources are granted. Neither cycle nor knot is a necessary and sufficient condition to detect a

deadlock. So, the generalized deadlock can be detected by examining the presence of some complex topology in

the WFG.

 This paper proposes a method that will improve the performance of Srinivasan [1] distributed deadlock

algorithm. In Srinivasan algorithm whenever multiple initiators invoke the algorithm one after the other same

deadlock cycle and similar message transfers may be reported in more than one execution. So, in order to handle

multiple executions an algorithm has been proposed which will not only reduce the number of message transfers

but will also reduce the deadlock detection time. The proposed algorithm gives priority to different algorithm

execution depending on their process id‟s along with this it allows lower priority executions to continue so that a

deadlock that are not directly reachable from the higher priority execution could be detected. The proposed

algorithm will be evaluated and compared with Srinivasan algorithm on parameters like deadlock detection time

and number of message transfer for both single and multiple executions.

II. RELATED WORK
Existing algorithms for the distributed deadlock detection in generalized model can be classified into two kinds:

 Distributed

 Centralized.

 In G. Bracha and S.Toueg [8] probes are forwarded along the edges of the WFG by the initiator, and

the replies which represent granting of the requests are propagated backward to determine deadlocks. It uses 4e

messages and 4d time units to detect deadlocks, where e and d refers to the number of edges and the diameter of

A Modified Algorithm for Distributed Deadlock Detection in Generalized Model

International organization of Scientific Research 2 | P a g e

the WFG respectively. The algorithm in [9] uses a token to detect deadlock with n
2
/2 messages in 4n time units.

In Kshemkalyani‟s algorithm [6], each node maintains the information required for deadlock detection. The

information at each node is updated, whenever reply to a probe is propagated back to the initiator. This

algorithm uses 2e messages and has a time complexity of 2d + 2 time units in worst case. The algorithm in [4]

constructs a distributed spanning tree (DST) through propagating probe messages along the edges of the WFG.

It then reduces the DST when reply to each probe message is received by the initiator. It uses less than 2e

messages has a time complexity of 2d time units in worst case.

 For a centralized algorithm, only the initiator collects and reduces the wait-for information instead of

distributed reduction. In Chen‟s algorithm [10], the initiator constructs an “image” of the WFG incrementally to

determine a deadlock. It only spends 2n messages and 2d time units. Instead of having the initiator control the

algorithm as in [10], the algorithm in [7] makes each node maintain the information required for deadlock

detection. As the reply to a probe is propagated backward to the initiator, the information is updated at each

node and carried by the reply. The algorithm spends 2e messages in 2d time units with O(e) message size.

Different from Chen‟s algorithm, the initiator in Lee‟s algorithm [7] receives replies from leaf nodes only, and it

needs less than 2e messages and only d + 2 time units. In the algorithm [1], the initiator performs reduction once

it receives a reply and it terminates the execution when it detects and resolves a deadlock. This algorithm uses

messages of length e+2n has a time complexity of d + 2 time units in worst case.

III. PROPOSED METHOD
 As mentioned earlier, the proposed work is to improve the performance of Srinivasan algorithm, by

adding the functionality of handling more than one instance of algorithm. For single execution the proposed

method works similar to that of Srinivasan but for handling multiple execution it uses the concept of priority, as

in [5], [6].

3.1 Description for Single Execution

This section describes the Srinivasan algorithm.

 The initiator of this algorithm, say process i, constructs a directed spanning tree by propagating CAL

messages to each of its successor which includes its unblocking function (Ri). If this is the first CAL message

that a process j receives, it becomes a child of sender and sends a REPORT message that carries its unblocking

function (Rj) directly to the initiator. Along with this process j sends CAL message to its own successor. While

if this is not the first CAL message that a process received, a RESPONSE message is sent to the initiator by the

process j only after it receives CAL message from all its predecessors. The unblocking condition (Ri) of process

i on resource is expressed as a predicate using AND and OR operator. For example Ri =X (YZ) denotes that

resource required by process „i‟ is either (X and Y) or (X and Z). Whenever a blocked process „i‟ sends a

REPORT message to the initiator, it gets included in the initiator‟s UNBLOCKING SET. In the other case if an

active process „i‟ sends a REPORT message, it gets included in initiator‟s ACTIVE SET and all unblocking

function in its UNBLOCKING SET are evaluated in following manner: Select an unblocking condition from the

UNBLOCKING SET and checks whether process in ACTIVE SET are sufficient to make Fi as true. Transfer

that process from UNBLOCKING SET to ACTIVE SET. Repeat that for all unblocking condition. Finally, all

processes remaining in the UNBLOCKING SET are declared as deadlock process.

3.2 Algorithm Specification
A formal description of algorithm [1] executed at process „i‟ is given below.

Data structure of a process ‘i’: (Initial values are inside the parenthesis).

 pi: the process from which first CAL has been received (NULL).

 Wi: process „i‟ weight value (0).

 ini: the set of processors which are predecessor of „i‟(INi).

 outi: the set of processors which are successor of „i‟(OUTi).

 Ri: the condition for process „i‟ to be active (Ri).

 n_pdi: the number of predecessor of „i‟ (|INi|).

 n_sci: the number of successor of „i‟ (|OUTi|).

Additional datastructure at an initiator

 UFinit: a set of unblocking functions of the form <i, Ri, n_pdi> ().

 ACinit: the set of active processes ().

 Winit: the accumulated weight value (0).

A Modified Algorithm for Distributed Deadlock Detection in Generalized Model

International organization of Scientific Research 3 | P a g e

 Message Formats: (w indicates the weight value)

 CAL(init, j, w): A call sent by j. init represents the initiator of the algorithm.

 REPORT(j, Rj, n_pdj): sent by process j as a reply to first CALL message.

 RESPONSE(j, wj): sent by process „j‟ .

I. When process „i‟ is the initiator of the algorithm

initi =i;

 pi =i;

 UFinit = UFinit {(i, Ri, n_pdi)};

 send CAL(init, i, wi/n_sci) to each k outi

II. When process k receives CAL(init, i, w/ n_sci)

 from process i:

 n_pdk--;

 if (parentk= NULL and k ini) then

 pi=k;

 initi=i;

 send REPORT(i, Ri, n_pdi) to initi

II.1 if(n_sci > 0) then

 send CAL(init, i, wk/ n_sci) k outi

 else

II.1.2 send RESPONSE(i, wk) to initi

II.2 else if (p≠NULL AND kini) then

II.2.1 if(i= initiator) then

 winit=winit+wk;

II.2.2 else if(n_pdi=0) then

 Send RESPONSE(i, wi) to initi

 else

 Wi=wi+wk;

III. When process k receives REPORT(i, Ri,

 n_pdi) from process i:

 if(Ri=) then

 ACinit=ACinit{i};

 computation();

 else

 UFinit=UFinit {(i, Ri, n_pdi)};

IV. When process k receives RESPONSE(i,

 wi) from process i:

 Winit=winit + wi;

V. procedure computation()

 for each i UFinit do

 begin

 if(compute(i, Ri) = true) then

 ACinit = ACinit {i};

 UFinit = UFinit – {i, Ri, n_pdi};

 end for

VI. procedure resolve()

 if (UFinit =) then

 No Deadlock ; exit;

 else

 for each i UFinit do

 begin

 Print Deadlocked Nodes;

 end for

 end else

3.3 Example Execution

An algorithm execution is illustrated in Fig. 1. The blocking conditions are F1= (23)4, F2=1, F4=1. In DST

shown in Fig. 1(b), tree and non-tree edges are pictured with solid and dashed arrows respectively. We assume

the following scenario of message propagation:

Figure 1: An illustration of the algorithm execution. (a) The Wait for Graph. (b) The DST built by the algorithm.

(c) Requesting condition of each process.

1. Process 1 initiates the algorithm and sends CAL(1,1,1/3) to process 2,3,4.

2. When process 2 receives CAL from process 1, it sends REPORT(2,F2,0) to 1 and CAL(1,2,1/3) to 1.

3. When process 3 receives CAL from process 1, it sends REPORT(3,F3,0) and RESPONSE(1,0) to 1.

4. When Process 4 receives CAL from process 1, it sends REPORT(4,F4,0) and CAL(4,2,1/3) to 1.

The unblocking condition collected at the initiator is shown in Fig. 1(c). When the initiator receives re REPORT

from process 3, the unblocking functions in the set UFinit are reduced by it and process 1, 2, 4 are declared

deadlocked.

 3.4 Description for Multiple Executions

 In this section, the proposed strategy for handling more than one executions of the Srinivasan algorithm

is presented. In srinivasan algorithm, whenever multiple initiators invoke the algorithm one after the other same

deadlock cycle and similar message transfers may be reported in more than one execution. In order to overcome

A Modified Algorithm for Distributed Deadlock Detection in Generalized Model

International organization of Scientific Research 4 | P a g e

this drawback, an algorithm has been proposed that will reduce the deadlock detection time and number of

message transfers for multiple executions.

Although the proposed algorithm has some similarity with [5, 6, and 7] but it differs from them in following

ways:

 Every algorithm execution is given a priority based on initiator id, whereas in [5, 6 and 7] priority is assigned

based on sequence number, local time and initiator id.

 In the proposed algorithm processes involved in higher priority executions do not abort the executions of

lower priority initiators, whereas in [5, 6] higher priority executions abort lower priority.

3.4 Algorithm

The strategy given in section 3.3 is formally described in the following. For simplicity only activities additional

to section 3.2 are presented. Each message used in the proposed algorithm will have an additional parameter for

priority denoted as msg_pr.

Additional data structure at Process i:

 curr_pri: the priority of the algorithm execution in which process i is involved. The process which initiates

the algorithm will set this priority depending on its process id and forwards it through CALL message.

(P.1) when process i receives CAL(msg_pr, init, j,w):

(P.1.1) if msg_pr < curr_pri then

 send REPORT(msg_pr, j, Rj, n_pdj) to init.

(P.1.2) else if msg_pr > curr_pri or curr_pri=0 then

 begin

 curr_pri=msg_pr;

 Execute Step II in 3.2;

 end else

(P.2) When initiator receives REPORT(msg_pr, j, Rj, n_pdj):

(P.2.1) if msg_pr < curr_pri then

 Discard the message;

(P.2.2) else if msg_pr > curr_pri then ;

(P.2.3) else Execute step III in 3.2;

(P.3) When initiator receives RESPONSE(msg_pr, j, wj):

(P.3.1) if msg_pr < curr_pri then

 Discard the message;

(P.3.2) else if msg_pr > curr_pri then ;

(P.3.3) else Execute step IV in 3.2;

IV. CONCLUSION
 In this paper we presented a technique that will improve the performance of srinivasan algorithm for

handling more than one algorithm execution. The proposed technique uses the concept of priority to handle

more than one algorithm execution. Proposed method will perform better in deadlock detection time and number

of message transfers than srinivasan algorithm. However, for single execution it performs similar to srinivasan

algorithm. The proposed algorithm can be used to detect deadlocks in different areas like management of

resource in operating system, network communication and transactions management in distributed database.

REFERENCES
[1] S. Srinivasan and R. Rajaram, “An improved, centralized algorithm for detection and resolution of

distributed deadlock in the generalized model”, International Journal of Parallel, Emergent and

Distributed Systems, vol. 27, no. 3, pp. 205-224, 2012

[2] E. Knapp, “Deadlock detection in distributed database systems,” ACM Comput, Surv, 19(4), (1987), pp.

303-327.

[3] M. Singhal, Deadlock detection in distributed systems, IEEE Comput,22(1989), pp. 37-48.

[4] S. Srinivasan and R. Rajaram, “A decentralized deadlock detection and resolution algorithm for

generalized model in distributed systems,” J. Distributed Parallel Databases 29(4) (2011), pp. 261-276.

[5] A. D. Kshemkalyani and M. Singhal, “Efficient Detection and Resolution of Generalized Distributed

Deadlocks,” IEEE Trans. Software Eng., vol. 20, no. 1, pp. 43-54, Jan. 1994.

[6] A. D. Kshemkalyani and M. Singhal, “A One-Phase Agorithm to Detect Distributed Deadlocks in

Replicated Databases,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 6, pp. 880-895, Nov. 1999.

[7] S. Lee, “Fast, Centralized Detection and Resolution of Distributed Deadlocks in the Generalized Model,”

IEEE Trans. Software Eng., vol. 30, no. 8, pp.561-573, Sept. 2004.

A Modified Algorithm for Distributed Deadlock Detection in Generalized Model

International organization of Scientific Research 5 | P a g e

[8] G. Bracha and S. Toueg, “A Distributed algorithm for generalized deadlock detection,” Distributed

Computing, 2 (1987), pp. 127-138.

[9] J. Wang, S. Huang and N. Chen, “Distributed algorithm for detecting generalized deadlocks,” Tech.

Report, Department of Computer Science, National Tsing-Hua University (1990).

[10] S. Lee, “Efficient generalized deadlock detection and resolution in distributed systems,” Proceedings of

the 21
st
 International Conference on Distributed Computing Systems (2001), pp. 47-54.

